中国水稻科学 ›› 2016, Vol. 30 ›› Issue (6): 603-610.DOI: 10.16819/j.1001-7216.2016.6033
施勇烽1, 贺彦1, 郭丹1, 吕向光1,2, 黄奇娜1, 吴建利1,*()
收稿日期:
2015-12-29
修回日期:
2016-03-12
出版日期:
2016-11-10
发布日期:
2016-11-10
通讯作者:
吴建利
基金资助:
Yong-feng SHI1, Yan HE1, Dan GUO1, Xiang-guang LV1,2, Qi-na HUANG1, Jian-li WU1,*()
Received:
2015-12-29
Revised:
2016-03-12
Online:
2016-11-10
Published:
2016-11-10
Contact:
Jian-li WU
摘要:
EMS诱导籼稻品种IR64获得淡绿叶突变体HM133。与野生型IR64相比,HM133播种后的第6周和第15周的光合色素含量以及抽穗期的净光合速率显著降低,气孔导度则明显上升;此外,突变体株高、每穗实粒数和结实率等农艺性状也较野生型显著下降。叶绿体超微结构分析表明,分蘖期HM133类囊体基粒片层形状不规则,堆叠凌乱、排列疏松。遗传分析表明HM133淡绿叶性状受单隐性核基因控制。通过分子标记将该基因定位于第3染色体长臂RM143和RM3684之间。该区间内包含编码镁螯合酶D亚基的基因OsCHLD。序列分析表明HM133中该基因第10外显子上有一个从G突变为A的单碱基变异,导致编码的氨基酸由精氨酸变成谷氨酸,推测OsCHLD基因即为控制HM133淡绿叶表型的候选基因。
中图分类号:
施勇烽, 贺彦, 郭丹, 吕向光, 黄奇娜, 吴建利. 水稻淡绿叶突变体HM133的遗传分析与基因定位[J]. 中国水稻科学, 2016, 30(6): 603-610.
Yong-feng SHI, Yan HE, Dan GUO, Xiang-guang LV, Qi-na HUANG, Jian-li WU. Genetic Analysis and Gene Mapping of a Pale Green Leaf Mutant HM133 in Rice[J]. Chinese Journal OF Rice Science, 2016, 30(6): 603-610.
基因 Gene | 正向引物(5'-3') Forward primer(5'-3') | 反向引物(5'-3') Reverse primer(5'-3') |
---|---|---|
OsChlD | GGAAAGAGAGGGCATTAG | CAATACGATCAAGTAAGTGTT |
OsChlI | AGTAACCTTGGTGCTGTG | AATCCATCAACATTCAACTCTG |
OsChlH | CTATACATTCGCCACACT | TATCACACAACTCCCAAG |
HEMA1 | CGCTATTTCTGATGCTATGGGT | TCTTGGGTGATGATTGTTTGG |
PORA | TGTACTGGAGCTGGAACAACAA | GAGCACAGCAAAATCCTAGACG |
CAO1 | GATCCATACCCGATCGACAT | CGAGAGACATCCGGTAGAGC |
Cab1R | AGATGGGTTTAGTGCGACGAG | TTTGGGATCGAGGGAGTATTT |
Cab2R | TGTTCTCCATGTTCGGCTTCT | GCTACGGTCCCCACTTCACT |
psaA | GCGAGCAAATAAAACACCTTTC | GTACCAGCTTAACGTGGGGAG |
psbA | CCCTCATTAGCAGATTCGTTTT | ATGATTGTATTCCAGGCAGAGC |
rbcL | CTTGGCAGCATTCCGAGTAA | ACAACGGGCTCGATGTGATA |
rbcS | TCCGCTGAGTTTTGGCTATTT | GGACTTGAGCCCTGGAAGG |
YGL1 | CAGTCTCCAATGGCCACCT | TGCTTTCATCAGTGGCTGG |
SPP | CGGAGAGGAAACATAATGAC | ATAGGCATTTGTCTTTGTCTC |
PPR1 | CTAAGACCGAATGACAAATGC | GCACTGCCAACAAGAATACC |
DVR | CGAGCCCAGGTTCATCAAGGTGC | CCTCCCGATCTTGCCGAACTCC |
Ubiquitin | GCTCCGTGGCGGTATCAT | CGGCAGTTGACAGCCCTAG |
表1 实时定量PCR引物
Table 1 Primers used in real-time PCR.
基因 Gene | 正向引物(5'-3') Forward primer(5'-3') | 反向引物(5'-3') Reverse primer(5'-3') |
---|---|---|
OsChlD | GGAAAGAGAGGGCATTAG | CAATACGATCAAGTAAGTGTT |
OsChlI | AGTAACCTTGGTGCTGTG | AATCCATCAACATTCAACTCTG |
OsChlH | CTATACATTCGCCACACT | TATCACACAACTCCCAAG |
HEMA1 | CGCTATTTCTGATGCTATGGGT | TCTTGGGTGATGATTGTTTGG |
PORA | TGTACTGGAGCTGGAACAACAA | GAGCACAGCAAAATCCTAGACG |
CAO1 | GATCCATACCCGATCGACAT | CGAGAGACATCCGGTAGAGC |
Cab1R | AGATGGGTTTAGTGCGACGAG | TTTGGGATCGAGGGAGTATTT |
Cab2R | TGTTCTCCATGTTCGGCTTCT | GCTACGGTCCCCACTTCACT |
psaA | GCGAGCAAATAAAACACCTTTC | GTACCAGCTTAACGTGGGGAG |
psbA | CCCTCATTAGCAGATTCGTTTT | ATGATTGTATTCCAGGCAGAGC |
rbcL | CTTGGCAGCATTCCGAGTAA | ACAACGGGCTCGATGTGATA |
rbcS | TCCGCTGAGTTTTGGCTATTT | GGACTTGAGCCCTGGAAGG |
YGL1 | CAGTCTCCAATGGCCACCT | TGCTTTCATCAGTGGCTGG |
SPP | CGGAGAGGAAACATAATGAC | ATAGGCATTTGTCTTTGTCTC |
PPR1 | CTAAGACCGAATGACAAATGC | GCACTGCCAACAAGAATACC |
DVR | CGAGCCCAGGTTCATCAAGGTGC | CCTCCCGATCTTGCCGAACTCC |
Ubiquitin | GCTCCGTGGCGGTATCAT | CGGCAGTTGACAGCCCTAG |
图1 野生型IR64和突变体HM133的不同时期植株表型 A—野生型IR64和突变体HM133幼苗表型;B—野生型IR64和突变体HM133分蘖期的表型。
Fig. 1. Phenotype of the wide-type IR64 and the mutant HM133 at different growth stages. A, Phenotype of the wide type IR64 and the mutant HM133 at the seedling stage; B, Phenotype of the wide type IR64 and the mutant HM133 at the tillering stage.
材料 Material | 株高 Plant height /cm | 有效穗数 No. of productive panicles | 穗长 Panicle length /cm | 每穗实粒数 Number of filled grains per panicle | 结实率 Seed-setting rate/% | 千粒重 1000-grain weight/g |
---|---|---|---|---|---|---|
IR64 | 113.0±1.7 | 14.0±1.0 | 25.0±1.4 | 81.2±7.1 | 74.6±1.6 | 27.52±0.38 |
HM133 | 108.7±0.6* | 12.7±2.1 | 24.9±0.3 | 62.9±7.3* | 68.8±2.1* | 28.35±0.35 |
表2 野生型IR64和突变体HM133的主要农艺性状
Table 2 Agronomic traits of the wild-type IR64 and mutant HM133.
材料 Material | 株高 Plant height /cm | 有效穗数 No. of productive panicles | 穗长 Panicle length /cm | 每穗实粒数 Number of filled grains per panicle | 结实率 Seed-setting rate/% | 千粒重 1000-grain weight/g |
---|---|---|---|---|---|---|
IR64 | 113.0±1.7 | 14.0±1.0 | 25.0±1.4 | 81.2±7.1 | 74.6±1.6 | 27.52±0.38 |
HM133 | 108.7±0.6* | 12.7±2.1 | 24.9±0.3 | 62.9±7.3* | 68.8±2.1* | 28.35±0.35 |
取样时间 Sampling time | 材料 Material | 叶绿素a Chlorophyll a content | 叶绿素b Chlorophyll b content | 总叶绿素 Total chlorophyll content | 类胡萝卜素 Carotenoid content |
---|---|---|---|---|---|
播种后6周 6 weeks after sowing | IR64 | 3.76±0.57 | 1.00±0.14 | 4.78±0.67 | 0.85±0.19 |
HM133 | 2.11±0.06** | 0.46±0.04** | 2.58±0.03** | 0.52±0.10* | |
播种后15周 15 weeks after sowing | IR64 | 2.86±0.29 | 0.88±0.13 | 3.77±0.42 | 0.63±0.04 |
HM133 | 1.54±0.08** | 0.42±0.03** | 1.97±0.12** | 0.33±0.01** |
表3 不同生长时期HM133与IR64叶片光合色素含量的比较
Table 3 Comparison of photosynthetic pigment contents between HM133 and IR64 at different growth stages. mg/g
取样时间 Sampling time | 材料 Material | 叶绿素a Chlorophyll a content | 叶绿素b Chlorophyll b content | 总叶绿素 Total chlorophyll content | 类胡萝卜素 Carotenoid content |
---|---|---|---|---|---|
播种后6周 6 weeks after sowing | IR64 | 3.76±0.57 | 1.00±0.14 | 4.78±0.67 | 0.85±0.19 |
HM133 | 2.11±0.06** | 0.46±0.04** | 2.58±0.03** | 0.52±0.10* | |
播种后15周 15 weeks after sowing | IR64 | 2.86±0.29 | 0.88±0.13 | 3.77±0.42 | 0.63±0.04 |
HM133 | 1.54±0.08** | 0.42±0.03** | 1.97±0.12** | 0.33±0.01** |
材料 Material | 净光合速率 Pn/(μmol·m-2 s-1) | 气孔导度 GS/(mol·m-2 s-1) | 胞间CO2浓度 Ci/(μmol·mol-1) | 蒸腾速率 Tr/(mmol·m-2s-1) |
---|---|---|---|---|
IR64 | 14.45±1.78 | 0.57±0.13 | 309.13±7.30 | 4.12±0.64 |
HM133 | 12.74±1.38* | 0.73±0.09* | 313.75±6.41 | 4.26±0.25 |
表4 抽穗期野生型IR64和突变体HM133的剑叶光合特性
Table 4 Photosynthetic parameters of flag leaf of IR64 and HM133 at the heading stage.
材料 Material | 净光合速率 Pn/(μmol·m-2 s-1) | 气孔导度 GS/(mol·m-2 s-1) | 胞间CO2浓度 Ci/(μmol·mol-1) | 蒸腾速率 Tr/(mmol·m-2s-1) |
---|---|---|---|---|
IR64 | 14.45±1.78 | 0.57±0.13 | 309.13±7.30 | 4.12±0.64 |
HM133 | 12.74±1.38* | 0.73±0.09* | 313.75±6.41 | 4.26±0.25 |
图2 野生型IR64和突变体HM133的叶绿体超微结构 A和B-野生型IR64; C和D-突变体HM133。 S-淀粉粒; C-叶绿体; G-基粒; SL-基质片层; OG-嗜饿颗粒。
Fig. 2. Chloroplast ultrastructure of IR64 and HM133. A and B, IR64; C and D, HM133. S, Starch granule; C, Chloroplast; G, Granum; SL, Stroma lamella; OG, Osmiophilic granule.
图3 pglHM133定位及候选基因预测 A-pglHM133初步定位; B-候选基因OsChlD序列分析. 灰色部分表示HM133的1541位碱基G突变为A; C-IR24/HM133 F2群体的Taq Ⅰ酶切验证. M-分子量标记; 1-IR24; 2-HM133; 3-F1; 4~9-F2中淡绿叶单株; 10~25-F2群体中正常叶单株。
Fig. 3. Location of pglHM133 and candidate gene prediction. A,Primary mapping of yglHM133 on chromosome 3; B, Sequence analysis of the candidate gene OsChlD. The gray letters indicate single base substitution from G to A at position 1541; C, Mutation base of OsChlD confirmed with Taq I restriction enzyme digestion. M, Molecular marker; 1, IR24; 2, HM133; 3, F1; 4-9, Pale green plant of F2; 10-25, Normal plant of F2.
图4 RT-PCR分析野生型IR64与HM133 中叶绿素合成、叶绿体发育相关基因的表达
Fig. 4. Expression of genes associated with chlorophyll biosynthesis and chloroplast development in IR64 and HM133 by real-time PCR.
[1] | 李智强, 朱丹, 王志龙, 等. 水稻黄绿叶突变体djyg的遗传分析与基因定位. 中国水稻科学, 2015, 29: 601-609. |
Li Z Q, Zhu D, Wang Z L,et al.Genetic analysis and gene mapping of a yellow-green leaf mutant djyg in rice. Chin J Rice Sci, 2015, 29: 601-609. (in Chinese with English abstract) | |
[2] | Jung K H, Hur J, Ryu C H, et al.Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system.Plant Cell Physiol, 2003, 44: 463-472. |
[3] | 韩帅, 王立静, 钟世宜, 等. 一个新的玉米叶色突变体的遗传分析及基因定位. 玉米科学, 2012, 20: 26-28. |
Han S, Wang L J,Zhong S Y, et al.Genetic analysis and gene mapping of a new leaf color mutant in maize.J Maize Sci, 2012, 20: 26-28. (in Chinese with English abstract) | |
[4] | Sawers R J, Viney J, Farmer P R, et al.The maize Oil yellow1 (Oy1) gene encodes the I subunit of magnesium chelatase. Plant Mol Biol, 2006, 60: 95-106. |
[5] | Axelsson E, Lundqvist J, Sawicki A, et al.Recessiveness and dominance in barley mutants deficient in Mg-chelatase subunit D, an AAA protein involved in chlorophyll biosynthesis.Plant Cell, 2006, 18: 3606-3616. |
[6] | Mochizuki N,Brusslan J A, Larkin R, et al. Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci, 2001, 98: 2053-2058. |
[7] | 肖华贵, 杨焕文, 饶勇, 等. 甘蓝型油菜黄化突变体的叶绿体超微结构、气孔特征参数及光合特性. 中国农业科学, 2013, 46: 715-727. |
Xiao H G, Yang H W, Rao Y,et al.Analysis of chloroplast ultrastructure, stomatal characteristic parameters and photosynthetic characteristics of chlorophyll-reduced mutant in Brassica napus L. Sci Agric Sin, 2013, 46: 715-727. (in Chinese with English abstract) | |
[8] | Beale S I.Green genes gleaned.Trends Plant Sci, 2005, 10: 309-312. |
[9] | Lee S, Kim J H, Yoo E S, et al.Differential regulation of chlorophyll a oxygenase genes in rice.Plant Mol Biol, 2005, 57: 805-818. |
[10] | Zhang H, Li J, Yoo J H, et al.Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62: 325-337. |
[11] | Wu Z, Zhang X, He B, et al.A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis.Plant Physiol, 2007, 145: 29-40. |
[12] | Wang P, Gao J, Wan C, et al.Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice.Plant Physiol, 2010, 153: 994-1003. |
[13] | Deng X J, Zhang H Q, Wang Y, et al.Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid(Oryza sativa L. ssp. indica). PLoS One, 2014, 9(6): e99564. |
[14] | Sakuraba Y, Rahman M L, Cho S H, et al.The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions.Plant J, 2013, 74: 122-133. |
[15] | Li Q Z, Zhu F Y, Gao X, et al.Young Leaf Chlorosis 2 encodes the stroma-localized heme oxygenase 2 which is required for normal tetrapyrrole biosynthesis in rice.Planta, 2014, 240: 701-712. |
[16] | Chen H, Cheng Z, Ma X, et al.A knockdown mutation of YELLOW-GREEN LEAF2 blocks chlorophyll biosynthesis in rice. Plant Cell Rep, 2013, 32: 1855-1867. |
[17] | Li J, Pandeya D, Nath K, et al. ZEBRA-NECROSIS, a thylakoid-bound protein, is critical for the photoprotection of developing chloroplasts during early leaf development. Plant J, 2010, 62: 713-725. |
[18] | Su N, Hu M L, Wu D X, et al.Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production.Plant Physiol, 2012, 159: 227-238. |
[19] | Lv X G, Shi Y F, Xu X, et al. Oryza sativa chloroplast signal recognition particle 43 (OscpSRP43) is required for chloroplast development and photosynthesis. PLoS ONE, 2015, 10(11): e143249. |
[20] | Zhang F, Luo X, Hu B, et al. YGL138(t), encoding a putative signal recognition particle 54 kDa protein, is involved in chloroplast development of rice. Rice, 2013, 6(1): 7. |
[21] | Wellburn A R.The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution.J Plant Physiol, 1994, 144: 307-313. |
[22] | Arnon D I.Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1-15. |
[23] | Huang Q N, Shi Y F, Zhang X B, et al.Single base substitution in OsCDC48 is responsible for premature senescence and death phenotype in rice. J Integr Plant Biol, 2016, 58: 12-28. |
[24] | 卢扬江, 郑康乐. 提取水稻DNA的一种简易方法. 中国水稻科学, 1992, 6(1): 47-48. |
Lu Y J, Zheng K L.A simple method for isolation of rice DNA.Chin J Rice Sci, 1992, 6(1): 47-48.(in Chinese with English abstract) | |
[25] | Shi Y F, Chen J, Liu W Q, et al.Genetic analysis and gene mapping of a new rolled-leaf mutant in rice (Oryza sativa L.). Sci China C Life Sci, 2009, 52: 885-890. |
[26] | Masuda T.Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls.Photosynth Res, 2008, 96: 121-143. |
[27] | 孙小秋, 王兵, 肖云华, 等. 水稻ygl98黄绿叶突变基因的精细定位与遗传分析. 作物学报, 2011, 37(6): 991-997. |
Sun X Q, Wang B, Xiao Y H,et al.Genetic analysis and fine-mapping of ygl98 yellow-green leaf gene in rice. Acta Agron Sin, 2011, 37(6): 991-997. (in Chinese with English abstract). | |
[28] | Tian X Q, Ling Y H, Fang L K, et al.Gene cloning and functional analysis of yellow green leaf3 (ygl3) gene during the whole-plant growth stage in rice. Genes & Genom, 2013, 35: 87-93. |
[29] | Luo T, Luo S, Araujo W L, et al.Virus-induced gene silencing of pea CHLI and CHLD affects tetrapyrrole biosynthesis, chloroplast development and the primary metabolic network.Plant Physiol Biochem, 2013, 65: 17-26. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||